

Bandit Learning in Matching Markets

Shuai Li

2025.4.13 at C&A

Matching markets

- Talent cultivation (school admissions, student internships)
- Task allocation (crowdsourcing assignments, domestic services)
- Resource distribution (housing allocation, organ donation allocation)

Matching market has two sides

Both sides have preferences over the other side

 $: B_2 > B_3 > B_1 > B_4$

 B_1

Worker side

 $: B_1 > B_2 > B_3 > B_4$

 B_2

Based on payment or prior familiarity of the task

 $: B_3 > B_1 > B_2 > B_4$

 B_3

 $: B_1 > B_2 > B_3 > B_4$

 B_4

Both sides have preferences over the other side

$$B_1: A_1 > A_2 > A_3 > A_4 > A_5$$

$$B_2: A_2 > A_1 > A_4 > A_3 > A_5$$

$$B_3: A_3 > A_1 > A_2 > A_5 > A_4$$

$$B_4: A_4 > A_5 > A_1 > A_2 > A_3$$

Employer side

Based on the skill levels of workers

Nobel Memorial Prize in Economic Sciences 2012

Alvin E. Roth

Lloyd Shapley

Stable matching

Participants have no incentive to abandon their current partner, i.e.,

no blocking pair such that they both preferred to be matched with each other than their current partner

May be more than one stable matchings

$$m_1 = \{(A_1, B_1), (A_2, B_2), (A_3, B_3)\}$$

$$m_2 = \{(A_1, B_2), (A_2, B_1), (A_3, B_3)\}^{-7}$$

A-side optimal stable matching¹

Each agent on A-side is matched with the most preferred partner among all stable matchings

$$A_2$$
 $B_2 > B_1 > B_3$
 B_2
 $A_1 > A_2 > A_3$

$$m_1 = \{(A_1, B_1), (A_2, B_2), (A_3, B_3)\}$$

$$A_3$$
 $B_3 > B_1 > B_2$
 $B_3 > A_1 > A_2$

A-side pessimal stable matching

Each agent on A-side is matched with the least preferred partner among all stable matchings

$$A_3$$
 $B_3 > B_1 > B_2$
 $B_3 > A_1 > A_2$

$$m_2 = \{(A_1, B_2), (A_2, B_1), (A_3, B_3)\}$$

How to find a stable matching?

Gale-Shapley (GS) algorithm

[Gale and Shapley (1962)]

Agents on one side independently propose to agents on the other side according to their preference ranking until no rejection happens

Gale-Shapley (GS) algorithm: Case 2

11 Step 3 Step 2

GS properties: Stability

- The GS algorithm returns the stable matching
- Proof sketch
- Suppose there exists blocking pair (A_i, B_j) such that
 - A_i prefers B_i than its current partner m_i
 - B_j prefers A_i than its current partner m_j
- For A_i , it first proposes to B_i , but is rejected, then proposes to m_i
- ullet This means that B_j must prefers m_j than A_i
- Contradiction!

GS properties: Time complexity

- Each B-side agent can reject each A-side agent at most once
- At least one rejection happens at each step before stop
- $N = \# \{proposing-side agents\}, K = \# \{acceptance-side agents\}$
- \Longrightarrow GS will stop in at most NK steps

GS properties: Optimality

- Who proposes matters
 - Each proposing-side agent is happiest, matched with the most preferred partner among all stable matchings
 - Each acceptance-side agent is only matched with the least preferred partner among all stable matchings
 - A-side optimal stable matching = B-side pessimal stable matching

But agents usually have unknown preferences in practice

Can learn them from iterative interactions!

Bandit learning in matching markets

[Liu et al., AISTATS 2020]

• *K* arms:
$$\mathcal{K} = \{a_1, a_2, ..., a_K\}$$

- $N \leq K$ to ensure players can be matched
- $\mu_{i,j} > 0$: (unknown) preference of player p_i towards arm a_i
- For each player p_i
 - $\{\mu_{i,j}\}_{j\in[K]}$ forms its preference ranking
 - For simplicity, the preference values of any player are distinct
- For each round *t*:
 - Player p_i selects arm $A_i(t)$
 - If p_i is accepted by $A_i(t)$: receive $X_{i,A_i(t)}(t)$ with

$$\mathbb{E}\big[X_{i,A_i(t)}(t)\big] = \mu_{i,A_i(t)}$$

• If p_i is rejected: receive $X_{i,A_i(t)}(t)=0$ When would p_i be rejected?

Satisfaction over this matching experience

Michael Jordan

For simplicity, assume arms know their preferences

Objective

- Minimize the stable regret
 - The player-optimal stable matching

$$\overline{m} = \{(i, \overline{m}_i) : i \in [N]\}$$

• The player-optimal stable regret of player
$$p_i$$
 is
$$\overline{Reg}_i(T) = T\mu_{i,\overline{m}_i} - \mathbb{E}\left[\sum_{t=1}^T X_{i,A_i(t)}(t)\right]$$

- The player-pessimal stable regret $Reg_i(T)$
 - Use the objective of the player-pessimal stable matching m
- Guarantee strategy-proofness
 - Single player can not achieve O(T) reward increase by deviating when others follow the algorithm 17

Multi-armed bandits (MAB)

[Lattimore and Szepesvári, 2020]

corresponds to N=1 player setting

Time	1	2	3	4	5	6	7	8	9	10
Arm 1	\$1	\$0			\$1	\$1	\$0			
Arm 2			\$1	\$0						

To accumulate as many rewards, which arm would you choose next?

Exploitation V.S. Exploration

Upper confidence bound (UCB) [Auer et al., 2002]

- Optimism: Believe arms have higher rewards, encourage exploration
 - The UCB value represents the reward estimates
- For each round t, select the arm $A(t) \in \operatorname{argmax}_{j \in [K]} \left\{ \widehat{\mu}_j + \sqrt{\frac{\log 1/\delta}{T_j(t)}} \right\}$ Regret $O(K \log T/\Delta)$ Exploitation

Previous works for online matching markets

	Regret bound	Setting
Liu et al. [2020]	$O\left(K\log T/\Delta^2 ight) \ O\left(NK^3\log T/\Delta^2 ight)$	player-optimal, centralized, known T, Δ player-pessimal, centralized
Liu et al. [2021]	$O\left(rac{N^5K^2\log^2T}{arepsilon^{N^4}\Delta^2} ight)$	player-pessimal
Sankararaman et al. [2021]	$rac{O\left(NK\log T/\Delta^2 ight)}{\Omega\left(N\log T/\Delta^2 ight)}$	unique stable matching
Basu <i>et al.</i> [2021]	$O\left(K\log^{1+\varepsilon}T + 2^{\left(\frac{1}{\Delta^2}\right)^{\frac{1}{\varepsilon}}}\right)$	player-optimal
	$O\left(NK\log T/\Delta^2\right)$	unique stable matching
Kong et al. [2022]	$O\left(rac{N^5K^2\log^2T}{arepsilon^{N^4}\Delta^2} ight)$	player-pessimal
Maheshwari et al. [2022]	$O\left(CNK\log T/\Delta^2 ight)$	unique stable matching

 Δ is the minimum preference gap between different arms among all players, ε is the hyper-parameter of the algorithm, C is related to the unique stable matching condition and can grow exponentially in N

Why UCB fails to achieve player-optimality?

- When p_3 lacks exploration on a_1 with $a_1 > a_3 > a_2$ on UCB, GS outputs the matching $(p_1, a_2), (p_2, a_1), (p_3, a_3)$
- p_3 fails to observe a_1
- UCB vectors do not help on exploration here

 p_3 $a_1 > a_3 > a_2$ $a_3 > p_1 > p_2$

 Not consistent with the principle of optimism in face of uncertainty

How to balance EE in a more appropriate way?

- Exploration-Exploitation trade-off
 - Exploitation goes though with correct rankings by following GS
 - Require enough exploration to estimate the correct rankings
- The UCB ranking does not guarantee enough exploration
- Perhaps design manually?
- To avoid other players' block: Coordinate selections in a round-robin way

Explore-then-GS (ETGS) [Kong and Li, SODA 2023]

- Avoid unnecessary exploitation before estimating preferences well
 - Only when all players estimate well, enter GS + exploit

ETGS implementation: Communication

 At communication block: players determine whether all players estimate their preference rankings well

- For p_i
 - If there exists a ranking ρ_i over arms such that
 - The confidence intervals of all arms are disjoint
 - Note: this estimated ranking is accurate w.h.p.
- How to communicate with others?

ETGS implementation: Communication (cont.)

- Based on observed all players' matching outcomes [KL, 2023]
 - If p_i has estimated well with ranking ρ_i : select arm a_i
 - Else: Select nothing

At the communication round, if p_i observes that all players have been matched:

Then all players estimate their preference well

ETGS implementation: Communication (cont.)

- Based on players' own matching outcomes [Zhang et al., 2022]
 - Communicate based on every pair of players
 - p_i can transmit information $\{0,1\}$ to $p_{i'}$ based on a_i $(p_i>p_{i'})$
 - In the corresponding round, $p_{i'}$ always selects a_i
 - If p_i finished exploration, selects a_i
 - $p_{i'}$ is rejected, receives information 1
 - Otherwise, p_i do not select a_i
 - $p_{i'}$ is accepted, receive information 0
 - If a player cannot receive others' information (all arms prefer this player than others)
 - The player can directly exploit the stable arm
 - Others cannot block it

ETGS: Regret analysis [Kong and Li, SODA 2023]

- Exploration is enough ⇒ Estimated ranking is correct ⇒ All players enter the GS + exploit phase and find the player-optimal stable matching
- The player-optimal regret comes from exploration and communication

$$\overline{Reg}_i(T) = O\left(\frac{K\log T}{\Delta^2} + \log\left(\frac{K\log T}{\Delta^2}\right)\right)$$

What is the optimal regret that an algorithm can achieve?

Lower bound [Sankararaman et al., AISTATS 2021]

- Optimally stable bandits
 - All arms have the same preferences
 - ⇒ Unique stable matching exists
 - The stable arm of each player is its optimal arm
- For any player p_i
 - Its stable arm is a_i
 - a_i prefers $p_1, p_2 \dots p_{i-1}$ than p_i
 - $T_{i,j}$: the number of times that p_i selects a_j

$$\overline{Reg}_i(T) \ge \max \left\{ \Delta_{i,i,j} \sum_{j \neq i} T_{i,j} \right\},$$

The minimum regret that p_i may suffer at any round

$$\Delta_{i,\min} \sum_{i' < i} T_{i',i}$$

 p_i selects sub-optimal arm a_j

The optimal arm a_i is occupied by a higher-priority player

Lower bound (cont.)

- How many times does p_i select a sub-optimal arm a_j ?
 - To distinguish the sub-optimal arm a_i from the optimal arm a_i
 - p_i needs to observe this arm

$$\Omega\left(\frac{\log T}{\Delta_{i,i,j}^2}\right) \text{ times}$$

• K sub-optimal arms cause regret

$$\Omega\left(\sum_{j\neq i} \frac{\log T}{\Delta_{i,i,j}^2} \cdot \Delta_{i,i,j}\right) = \Omega\left(\frac{K\log T}{\Delta}\right)$$

Lower bound (cont.)

- How many times does a_i is occupied by a higher-priority player $p_{i'}$?
 - To distinguish the sub-optimal arm a_i from the optimal arm a_{i^\prime}
 - $p_{i'}$ needs to observe this arm

$$\Omega\left(\frac{\log T}{\Delta_{i\prime,i\prime,i}^2}\right) \text{times}$$

• *N* higher-priority players cause regret

$$\Omega\left(\sum_{i'< i} \frac{\log T}{\Delta_{i',i',i}^2} \cdot \Delta_{i,\min}\right) = \Omega\left(\frac{N\log T}{\Delta^2}\right) \quad p_2 \qquad p_2 \qquad p_3 \qquad p_4 \qquad p_4 \qquad p_5 \qquad p_6 \qquad p$$

• The stable regret satisfies

$$\overline{Reg}_i(T) \ge \Omega\left(\frac{N\log T}{\Delta^2} + \frac{K\log T}{\Delta}\right)$$
 $a_3 > a_1 > a_2$

Sub-optimality of ETGS

Needs to identify the full ranking among K arms

- But for the Gale-Shapley algorithm, what is the real complexity to find the optimal stable matching?
 - Whether it is necessary to determine the full ranking over K arms

Key observation of GS properties

Could the dependence of *K* be improved as *N*?

- The optimal stable arm must be the first N-ranked
 - The player moves to the next arm only if this arm is occupied by another player
 - N players at most occupy N arms

- The GS algorithm proceeds for at most N^2 steps
 - Those N arms can reject each of N players for at most once

Strategic behavior of ETGS

- If ∃ a player whose stable arm is the least preferred one
- He can always report that he has not finished exploration
- All players fail to enter the exploitation phase
- This player: Always match better arms during exploration, $\mathcal{O}(T)$ reward increase
- Other players: O(T/K) times match worse arms, O(T) reward decrease
- Not strategy-proof!

Improvement: Adaptive ETGS [KL, AAAI 2024]

• Idea: Instead of starting GS + exploitation with all players' agreement, integrating each player's own learning process into GS steps

- Players cooperatively explore arms in a round-robin manner
- Once a player identifies the most preferred one, starts exploiting this arm
- If the exploited arm is occupied by a higher-priority player (the arm "rejects" the player)
 - Explore the next most preferred arm (enter the next step of GS)

Adaptive ETGS: Strategic behavior

Have identified the optimal arm. What to report?

How about reporting NOT?

- Equivalent to delayed entering GS in the offline setting
- Cannot change the final matching results

How about reporting a non-optimal arm?

- Equivalent to misreporting rankings in the offline GS
- Cannot improve the final matched partner
- Is strategy-proof: Single player can not obtain O(T) reward increase (improve the final matched arm) by misreporting the exploration status

Adaptive ETGS: Regret [KWL, NeurIPS 2024]

Arrangement of the exploration process

ullet The player-optimal stable regret of each player p_i satisfies

$$\overline{Reg}_i(T) \le O\left(\frac{N^2 \log T}{\Delta^2} + \frac{K \log T}{\Delta}\right)$$

Regret type	Regret Bound	Communication type	Strategy-proofness	References	
Player-optimal	$O\left(\frac{K \log T}{\Delta^2}\right)$	Centralized, known Δ	?	[Liu et al., AISTATS 2020]	
	$O\left(\frac{NK \log T}{\Delta^2}\right)$	Centralized	?		
Player-pessimal	$O\left(\frac{N^5K^2\log^2T}{\alpha^{N^4}\Lambda^2}\right)$	Decentralized, observed	No	[Liu et al., JMLR 2021]	
	$O\left(\frac{1}{\rho^{N^4}\Delta^2}\right)$	matching outcomes	NO	[KY L , IJCAI 2022]	
Unique	$O\left(\frac{NK \log T}{\Delta^2}\right)$	Decentralized	?	[Sankararaman et al., AISTATS 2021; Basu et al., ICML 2021; Maheshwari et al., NeurIPS 2022]	
	$O\left(\frac{N \log T}{\Delta^2}\right)$	Centralized	?	[Wang and Li, TCS 2024; KWL, NeurIPS 2024]	
Optimal stable (Unique)	$\Omega\left(\frac{N\log T}{\Delta^2} + \frac{K\log T}{\Delta}\right)$	Decentralized	/	[Sankararaman et al., AISTATS 2021]	
	$O\left(K\log^{1+\varepsilon}T + 2^{\left(\frac{1}{\Delta^2}\right)^{1/\varepsilon}}\right)$	Decentralized	?	[Basu et al., ICML 2021]	
Player-optimal	$O\left(\frac{K \log T}{\Lambda^2}\right)$	Decentralized, observed matching outcomes	No	[Kong and Li, SODA 2023]	
Trayer optimar	$\left(\begin{array}{cc}\Delta^2\end{array}\right)$	Decentralized	No	[Zhang et al., NeurIPS 2022]	
	$O\left(\frac{N^2 \log T}{\Delta^2} + \frac{K \log T}{\Delta}\right)$	Decentralized	Yes	[KWL., NeurIPS 2024]	
Indifference stable	$O\left(\frac{NK\log T}{\Lambda^2}\right)$	Decentralized	?	37 [KTLLL L , ICLR 2025]	

Other setting variants

- Many-to-one matching markets
- Strategic behaviors
- Contextual information and indifferent preferences
- Non-stationary preferences
- Two-sided/multi-sided unknown preferences
- Markov matching markets
- Multi-sided matching markets

Many-to-one markets: Results overview

Setting	Regret type	Regret Bound	Communication type	Strategy- proofness	References	
	Player- optimal	$O\left(\frac{K \log T}{\Delta^2}\right)$	Centralized, known Δ	?	[WGY L , CIKM 2022]	
	Player- pessimal	$O\left(\frac{NK^3\log T}{\Delta^2}\right)$	Centralized	?		
		$O\left(\frac{N^5 K^2 \log^2 T}{\kappa^{N^4} \Delta^2}\right)$	Decentralized, observed matching outcomes	No		
Responsiveness	Player- optimal	$O\left(\frac{K \log T}{\Delta^2}\right)$	Decentralized, observed matching outcomes, $N \leq K \cdot \min_j C_j$	No	[Kong and Li,	
		$O\left(\frac{N\min\{N,K\}C\log T}{\Delta^2}\right)$	Decentralized, observed matching outcomes	Yes	AAAI 2024]	
		$O\left(\frac{\max\{N,K\}\log T}{\Delta^2}\right)$	Decentralized	No	[Zhang and Fang, AAMAS 2024]	
Substitutability	Player- pessimal	$O\left(\frac{NK \log T}{\Delta^2}\right)$	Decentralized, observed matching outcomes, known arms' preferences	?	[Kong and Li, AAAI 2024]	

Open problems

- What is the optimal regret order?
 - $\Theta(N\log T/\Delta^2)$?
- How to guarantee strategy-proofness when players have more freedom?
 - The player needs to determine not only which 'optimal arm' to report
- How to generalize the setting and what is the optimal regret in these settings?
 - How to deal with players' indifferent preferences?
 - How to utilize the contextual information to accelerate the learning efficiency?
 - How to handle asynchronous agents?
- Maximum matching VS. Stable matching?

Thanks! & Questions?

Shuai Li

- Associate professor at Shanghai Jiao Tong University
- Research interests: RL/ML Theory
- Personal website: https://shuaili8.github.io/

References 1:

- Roth, Alvin E. "The evolution of the labor market for medical interns and residents: a case study in game theory." Journal of political Economy 92.6 (1984a): 991-1016.
- Gale, David, and Lloyd S. Shapley. "College admissions and the stability of marriage." The American Mathematical Monthly 69.1 (1962): 9-15.
- Lattimore, Tor, and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
- Liu, Lydia T., Horia Mania, and Michael Jordan. "Competing bandits in matching markets." International Conference on Artificial Intelligence and Statistics. PMLR, 2020.
- Sankararaman, Abishek, Soumya Basu, and Karthik Abinav Sankararaman.
 "Dominate or delete: Decentralized competing bandits in serial dictatorship." International Conference on Artificial Intelligence and Statistics. PMLR, 2021.

References 2:

- Maheshwari, Chinmay, Shankar Sastry, and Eric Mazumdar. "Decentralized, communication-and coordination-free learning in structured matching markets." Advances in Neural Information Processing Systems 35 (2022): 15081-15092.
- Basu, Soumya, Karthik Abinav Sankararaman, and Abishek Sankararaman.
 "Beyond \$ log^ 2 (T) \$ regret for decentralized bandits in matching markets." International Conference on Machine Learning. PMLR, 2021.
- Kong, Fang, and Shuai Li. "Player-optimal Stable Regret for Bandit Learning in Matching Markets." Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics, 2023.
- Zhang, Yirui, Siwei Wang, and Zhixuan Fang. "Matching in Multi-arm Bandit with Collision." Advances in Neural Information Processing Systems 35 (2022): 9552-9563.

References 3:

- Wang, Zilong and Li, Shuai. "Optimal Analysis for Bandit Learning in Matching Markets with Serial Dictatorship." Theoretical Computer Science (TCS), 2024.
- Kong, Fang, Zilong Wang and Shuai Li. "Improved Analysis for Bandit Learning in Matching Markets." 38th Conference on Neural Information Processing Systems (NeurIPS). 2024.
- Kong, Fang, et al. "Bandit Learning in Matching Markets with Indifference." The 13rd International Conference on Learning Representations (ICLR), 2025.
- Zhang, Yirui and Fang, Zhixuan. "Decentralized Competing Bandits in Many-to-One Matching Markets." International Conference on Autonomous Agents and Multiagent Systems, Extended Abstract, 2024.